Latvian | Russian
   
SPSS ilustrēta apmācība
Literatūra par SPSS
Lejupielādēt SPSS

PSPP

LimeSurvey survey application

Nepieciešamais fails:
 

Korelācijas analīze


Глава 15. Корреляционный анализ

Корреляция - связь между двумя переменными. Расчёты подобных двумерных критериев взаимосвязи основываются на формировании парных значений, которые образовываются из рассматриваемых зависимых выборок.

Если в качестве примера возьмём данные об уровне холестерина для первых двух моментов времени из исследования гипертонии (файл hyper.sav), то в данном случае следует ожидать довольно сильную связь: большие значения в исходный момент времени являются веским поводом для ожидания больших значений и через 1 месяц.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график, называемый "диаграммой рассеяния" (Scatterplot) для двух зависимых переменных можно построить путём вызова меню Graphs... (Графики) / Scatter plots... (Диаграммы рассеяния) (см. гл. 22.8).

Образовавшееся скопление точек показывает, что обследованные пациенты с высокими исходными показателями, как правило, имеют высокие значения холестерина и при повторном опросе через месяц.

Статистика говорит о корреляции между двумя переменными и указывает силу связи при помощи некоторого критерия взаимосвязи, который получил название коэффициента корреляции. Этот коэффициент, всегда обозначаемый латинской буквой r, может принимать значения между -1 и +1, причём если значение находится ближе к 1, то это означает наличие сильной связи, а если ближе к 0, то слабой.

Если коэффициент корреляции отрицательный, это означает наличие противоположной связи: чем выше значение одной переменной, тем ниже значение другой. Сила связи характеризуется также и абсолютной величиной коэффициента корреляции. Для словесного описания величины коэффициента корреляции используются следуюшие градации:

Значение Интерпретация
до 0,2 Очень слабая корреляция
до 0,5 Слабая корреляция
до 0,7 Средняя корреляция
до 0,9 Высокая корреляция
свыше 0,9 Очень высокая корреляция

Метод вычисления коэффициента корреляции зависит от вида шкалы, которой относятся переменные:

Типы шкал Мера связи
Переменная X Переменная Y
Интервальная (или отношений) Интервальная (или отношений) Коэффициент Пирсона
Ранговая, интервальная (или отношений) Ранговая, интервальная (или отношений) Коэффициент Спирмена
Ранговая Ранговая Коэффициент Кендалла
Дихотомическая Дихотомическая Коэффициент φ (фи), четырёхполевая корреляция
Дихотомическая Ранговая Рангово-бисериальный коэффициент
  • Переменные с интервальной или с пропорциональной шкалойкоэффициент корреляции Пирсона.

  • По меньшей мере, одна из двух переменных имеет порядковую шкалу, либо с интервальной шкалой, но не нормально распределённойранговая корреляция по Спирману или τ (тау-грого-соая) Кендала (реже).

  • Одна из двух переменных является дихотомической – точечная двухрядная корреляция. Эта возможность в SPSS отсутствует. Вместо этого может быть применён расчёт ранговой корреляции по Спирману.

  • Обе переменные являются дихотомическимичетырёхполевая корреляция. Данный вид корреляции рассчитываются в SPSS на основании определения мер расстояния и мер сходства (см. гл 15.4).

Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена). Если связь, к примеру, U-образная (неоднозначная), то коэффициент корреляции непригоден для использования в качестве меры силы связи: его значение стремится к нулю. В следующих разделах будут рассмотрены корреляции по Пирсону, Спирману и Кендалу. Ешё один раздел специально посвящён частной корреляции.




Top.LV Latvijas Reitingi e-TIRGUS.LV on-line.lv Izglītība Education Яндекс.Метрика
Klienti

Roche

TNS Latvija

Latvijas Pilsoniskā alianse

LU FSI

Sendigo

Prime Mail

Valodu mācību centrs

Latvijas infektoloģijas centrs
Lapas karte
www.citariga.lv || www.limesurvey.ru || www.exsobalt.lv